Weighted Lattice Point Sums in Lattice Polytopes, Unifying Dehn–Sommerville and Ehrhart–Macdonald

статья
math.AG
math.CO
Авторы
Организация

Evgeny Materov

ФГБОУ ВО Сибирская пожарно-спасательная академия ГПС МЧС России

Paul Gunnels

Department of Mathematics and Statistics, University of Massachusetts, Amherst, USA

Matthias Beck

Department of Mathematics, San Francisco State University, USA

Дата публикации

январь 2020

Let \(V\) be a real vector space of dimension \(n\) and let \(M\subset V\) be a lattice. Let \(P\subset V\) be an \(n\)-dimensional polytope with vertices in \(M\), and let \(\varphi\colon V\rightarrow \mathbb{C}\) be a homogeneous polynomial function of degree \(d\). For \(q\in \mathbb{Z}_{>0}\) and any face \(F\) of \(P\), let \(D_{\varphi, F}(q)\) be the sum of \(\varphi\) over the lattice points in the dilate \(qF\). We define a generating function \(G_{\varphi}(q,y) \in \mathbb{Q}[q][y]\) packaging together the various \(D_{\varphi ,F}(q)\), and show that it satisfies a functional equation that simultaneously generalizes Ehrhart–Macdonald reciprocity and the Dehn–Sommerville relations. When \(P\) is a simple lattice polytope (i.e., each vertex meets \(n\) edges), we show how \(G_{\varphi}\) can be computed using an analogue of Brion–Vergne’s Euler–Maclaurin summation formula.

Ссылка для цитирования

BibTeX
@article{materov2020,
  author = {Materov, Evgeny and Gunnels, Paul and Beck, Matthias},
  title = {Weighted {Lattice} {Point} {Sums} in {Lattice} {Polytopes,}
    {Unifying} {Dehn–Sommerville} and {Ehrhart–Macdonald}},
  journal = {Discrete \& Computational Geometry},
  volume = {65},
  pages = {365–384},
  date = {2020},
  url = {https://link.springer.com/article/10.1007/s00454-020-00175-2},
  doi = {10.1007/s00454-020-00175-2},
  langid = {en}
}
На публикацию можно сослаться как
Materov, Evgeny, Paul Gunnels, and Matthias Beck. 2020. “Weighted Lattice Point Sums in Lattice Polytopes, Unifying Dehn–Sommerville and Ehrhart–Macdonald.” Discrete & Computational Geometry 65: 365–84. https://doi.org/10.1007/s00454-020-00175-2.