Let \(V\) be a real vector space of dimension \(n\) and let \(M\subset V\) be a lattice. Let \(P\subset V\) be an \(n\)-dimensional polytope with vertices in \(M\), and let \(\varphi\colon V\rightarrow \mathbb{C}\) be a homogeneous polynomial function of degree \(d\). For \(q\in \mathbb{Z}_{>0}\) and any face \(F\) of \(P\), let \(D_{\varphi, F}(q)\) be the sum of \(\varphi\) over the lattice points in the dilate \(qF\). We define a generating function \(G_{\varphi}(q,y) \in \mathbb{Q}[q][y]\) packaging together the various \(D_{\varphi ,F}(q)\), and show that it satisfies a functional equation that simultaneously generalizes Ehrhart–Macdonald reciprocity and the Dehn–Sommerville relations. When \(P\) is a simple lattice polytope (i.e., each vertex meets \(n\) edges), we show how \(G_{\varphi}\) can be computed using an analogue of Brion–Vergne’s Euler–Maclaurin summation formula.
Ссылка для цитирования
@article{materov2020,
author = {Materov, Evgeny and Gunnels, Paul and Beck, Matthias},
title = {Weighted {Lattice} {Point} {Sums} in {Lattice} {Polytopes,}
{Unifying} {Dehn–Sommerville} and {Ehrhart–Macdonald}},
journal = {Discrete \& Computational Geometry},
volume = {65},
pages = {365–384},
date = {2020},
url = {https://link.springer.com/article/10.1007/s00454-020-00175-2},
doi = {10.1007/s00454-020-00175-2},
langid = {en}
}