We give an explicit description of the terms and differentials of the Tate resolution of sheaves arising from Segre embeddings of \(\mathbb{P}^a\times\mathbb{P}^b\). We prove that the maps in this Tate resolution are either coming from Sylvester-type maps, or from Bezout-type maps arising from the so-called toric Jacobian.
Ссылка для цитирования
BibTeX
@article{materov2008,
author = {Materov, Evgeny and Cox, David},
publisher = {MSP},
title = {Tate Resolutions for {Segre} Embeddings},
journal = {Algebra \& Number Theory},
volume = {2},
number = {5},
pages = {523-549},
date = {2008},
url = {https://projecteuclid.org/journals/algebra-and-number-theory/volume-2/issue-5/Tate-resolutions-for-Segre-embeddings/10.2140/ant.2008.2.523.full},
doi = {10.2140/ant.2008.2.523},
langid = {en}
}
На публикацию можно сослаться как
Materov, Evgeny, and David Cox. 2008. “Tate Resolutions for Segre
Embeddings.” Algebra & Number Theory 2: 523–49. https://doi.org/10.2140/ant.2008.2.523.