Tate resolutions for Segre embeddings

статья
math.AG
math.AC
Авторы
Организация

Evgeny Materov

Department of Mathematics and Statistics, University of Massachusetts, Amherst, USA

David Cox

Department of Mathematics and Computer Science, Amherst College, USA

Дата публикации

май 2008

We give an explicit description of the terms and differentials of the Tate resolution of sheaves arising from Segre embeddings of \(\mathbb{P}^a\times\mathbb{P}^b\). We prove that the maps in this Tate resolution are either coming from Sylvester-type maps, or from Bezout-type maps arising from the so-called toric Jacobian.

Ссылка для цитирования

BibTeX
@article{materov2008,
  author = {Materov, Evgeny and Cox, David},
  publisher = {MSP},
  title = {Tate Resolutions for {Segre} Embeddings},
  journal = {Algebra \& Number Theory},
  volume = {2},
  number = {5},
  pages = {523-549},
  date = {2008},
  url = {https://projecteuclid.org/journals/algebra-and-number-theory/volume-2/issue-5/Tate-resolutions-for-Segre-embeddings/10.2140/ant.2008.2.523.full},
  doi = {10.2140/ant.2008.2.523},
  langid = {en}
}
На публикацию можно сослаться как
Materov, Evgeny, and David Cox. 2008. “Tate Resolutions for Segre Embeddings.” Algebra & Number Theory 2: 523–49. https://doi.org/10.2140/ant.2008.2.523.