Using Cayley trick, we define the notions of mixed toric residues and mixed Hessians associated with r Laurent polynomials \(f_1,\ldots,f_r\). We conjecture that the values of mixed toric residues on the mixed Hessians are determined by mixed volumes of the Newton polytopes of \(f_1,\ldots,f_r\). Using mixed toric residues, we generalize our Toric Residue Mirror Conjecture to the case of Calabi-Yau complete intersections in Gorenstein toric Fano varieties obtained from nef-partitions of reflexive polytopes.
Ссылка для цитирования
BibTeX
@misc{materov2003,
author = {Materov, Evgeny and Batyrev, Victor},
title = {Mixed {Toric} {Residues} and {Calabi-Yau} {Complete}
{Intersections}},
volume = {38},
date = {2003},
url = {http://www.ams.org/books/fic/038/},
doi = {http://dx.doi.org/10.1090/fic/038},
isbn = {978-0-8218-3355-1},
langid = {en}
}
На публикацию можно сослаться как
Materov, Evgeny, and Victor Batyrev. 2003. “Mixed Toric Residues
and Calabi-Yau Complete Intersections.” Calabi-Yau Varieties
and Mirror Symmetry. https://doi.org/http://dx.doi.org/10.1090/fic/038.