Mixed Toric Residues and Calabi-Yau Complete Intersections

статья
math.AG
Авторы
Организация

Evgeny Materov

Eberhard Karls Universität Tübingen, Deutschland

Victor Batyrev

Eberhard Karls Universität Tübingen, Deutschland

Дата публикации

ноябрь 2002

Using Cayley trick, we define the notions of mixed toric residues and mixed Hessians associated with r Laurent polynomials \(f_1,\ldots,f_r\). We conjecture that the values of mixed toric residues on the mixed Hessians are determined by mixed volumes of the Newton polytopes of \(f_1,\ldots,f_r\). Using mixed toric residues, we generalize our Toric Residue Mirror Conjecture to the case of Calabi-Yau complete intersections in Gorenstein toric Fano varieties obtained from nef-partitions of reflexive polytopes.

Ссылка для цитирования

BibTeX
@misc{materov2003,
  author = {Materov, Evgeny and Batyrev, Victor},
  title = {Mixed {Toric} {Residues} and {Calabi-Yau} {Complete}
    {Intersections}},
  volume = {38},
  date = {2003},
  url = {http://www.ams.org/books/fic/038/},
  doi = {http://dx.doi.org/10.1090/fic/038},
  isbn = {978-0-8218-3355-1},
  langid = {en}
}
На публикацию можно сослаться как
Materov, Evgeny, and Victor Batyrev. 2003. “Mixed Toric Residues and Calabi-Yau Complete Intersections.” Calabi-Yau Varieties and Mirror Symmetry. https://doi.org/http://dx.doi.org/10.1090/fic/038.